An Approach to Guided Learning of Boolean Functions
Evangelos Triantaphyllou ()
Additional contact information
Evangelos Triantaphyllou: Louisiana State University
Chapter Chapter 5 in Data Mining and Knowledge Discovery via Logic-Based Methods, 2010, pp 101-123 from Springer
Abstract:
Abstract In most of the previous treatments it was assumed that somehow we have available two disjoint sets of training data described by binary vectors, that is, the collections of the positive and negative examples. Then the problem was how to infer a Boolean function that “fits these data.” In other words, a Boolean function in CNF or DNF form that satisfies the requirements of the positive and negative examples as described in Chapters 2 and 3. It is hoped at this point that the inferred Boolean function will accurately classify all remaining examples not included in the currently available positive and negative examples.
Date: 2010
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-1-4419-1630-3_5
Ordering information: This item can be ordered from
http://www.springer.com/9781441916303
DOI: 10.1007/978-1-4419-1630-3_5
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().