Intuitionistic Fuzzy Approximately Additive Mappings
M. Eshaghi-Gordji (),
H. Khodaei (),
H. Baghani () and
M. Ramezani ()
Additional contact information
M. Eshaghi-Gordji: Semnan University
H. Khodaei: Semnan University
H. Baghani: Semnan University
M. Ramezani: Semnan University
Chapter Chapter 9 in Functional Equations in Mathematical Analysis, 2011, pp 107-124 from Springer
Abstract:
Abstract In this paper, we investigate the generalized Hyers–Ulam stability and the intuitionistic fuzzy continuity of the generalized additive functional equation $$\begin{array}{rcl} & & {2}^{n-1}\;{a}_{ 1}f({x}_{1}) = f\bigg{(}\sum\limits_{i=1}^{n}{a}_{ i}{x}_{i}\bigg{)} \\ & & \quad +\sum\limits_{k=2}^{n}\ \sum\limits_{{i}_{1}=2}^{k}\ \sum\limits_{{i}_{2}={i}_{1}+1}^{k+1}\ldots \sum\limits_{{i}_{n-k+1}={i}_{n-k}+1}^{n}f\left (\sum\limits_{{ i=1 \atop i\neq {i}_{1},\ldots,{i}_{n-k+1}} }^{n}{a}_{ i}{x}_{i} -\sum\limits_{r=1}^{n-k+1}{a}_{{ i}_{r}}{x}_{{i}_{r}}\right )\\ \end{array}$$ in intuitionistic fuzzy Banach spaces, where $$n \in \mathbb{N}\setminus \{1\}$$ and $${a}_{1},\ldots,{a}_{n} \in \mathbb{Z}\setminus \{0\}$$ with a 1≠ ± 1.
Keywords: Intuitionistic fuzzy normed space; Additive functional equation; Intuitionistic fuzzy stability; Intuitionistic fuzzy continuity (search for similar items in EconPapers)
Date: 2011
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-1-4614-0055-4_9
Ordering information: This item can be ordered from
http://www.springer.com/9781461400554
DOI: 10.1007/978-1-4614-0055-4_9
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().