EconPapers    
Economics at your fingertips  
 

Approximate Ternary Jordan Homomorphisms on Banach Ternary Algebras

Madjid Eshaghi Gordji (), N. Ghobadipour (), A. Ebadian (), M. Bavand Savadkouhi () and Choonkil Park ()
Additional contact information
Madjid Eshaghi Gordji: Semnan University
N. Ghobadipour: Urmia University
A. Ebadian: Urmia University
M. Bavand Savadkouhi: Semnan University
Choonkil Park: Hanyang University

Chapter Chapter 17 in Nonlinear Analysis, 2012, pp 305-315 from Springer

Abstract: Abstract Let A and B be two Banach ternary algebras over ℝ or ℂ. A linear mapping H:(A,[ ] A )→(B,[ ] B ) is called a ternary Jordan homomorphism if H([xxx] A )=[H(x)H(x)H(x)] B for all x∈A. In this paper, we investigate ternary Jordan homomorphisms on Banach ternary algebras, associated with the following functional equation $$f \biggl(\frac{x_1}{2}+x_2+x_3 \biggr)= \frac{1}{2}f(x_1)+f(x_2)+f(x_3). $$

Keywords: Generalized Hyers–Ulam stability; Banach ternary algebra; Ternary Jordan homomorphism; Functional equation; 39B52; 17A40; 46B03; 47Jxx (search for similar items in EconPapers)
Date: 2012
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-1-4614-3498-6_17

Ordering information: This item can be ordered from
http://www.springer.com/9781461434986

DOI: 10.1007/978-1-4614-3498-6_17

Access Statistics for this chapter

More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:spochp:978-1-4614-3498-6_17