EconPapers    
Economics at your fingertips  
 

Improving Web Search Relevance with Learning Structure of Domain Concepts

Boris A. Galitsky () and Boris Kovalerchuk ()
Additional contact information
Boris A. Galitsky: eBay Inc.
Boris Kovalerchuk: Central Washington University

A chapter in Clusters, Orders, and Trees: Methods and Applications, 2014, pp 341-376 from Springer

Abstract: Abstract This paper addresses the problem of improving the relevance of a search engine results in a vertical domain. The proposed algorithm is built on a structured taxonomy of keywords. The taxonomy construction process starts from the seed terms (keywords) and mines the available source domains for new terms associated with these entities. These new terms are formed in several steps. First the snippets of answers generated by the search engine are parsed producing parsing trees. Then commonalities of these parsing trees are found by using a machine learning algorithm. These commonality expressions then form new keywords as parameters of existing keywords and are turned into new seeds at the next learning iteration. To match NL expressions between source and target domains, the proposed algorithm uses syntactic generalization, an operation which finds a set of maximal common sub-trees of constituency parse trees of these expressions. The evaluation study of the proposed method revealed the improvement of search relevance in vertical and horizontal domains. It had shown significant contribution of the learned taxonomy in a vertical domain and a noticeable contribution of a hybrid system (that combines of taxonomy and syntactic generalization) in the horizontal domains. The industrial evaluation of a hybrid system reveals that the proposed algorithm is suitable for integration into industrial systems. The algorithm is implemented as a component of Apache OpenNLP project.

Keywords: Learning taxonomy; Learning syntactic parse tree; Transfer learning; Syntactic generalization; Search relevance (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-1-4939-0742-7_21

Ordering information: This item can be ordered from
http://www.springer.com/9781493907427

DOI: 10.1007/978-1-4939-0742-7_21

Access Statistics for this chapter

More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:spochp:978-1-4939-0742-7_21