Operator Inequalities Involved Wiener–Hopf Problems in the Open Unit Disk
Rabha W. Ibrahim ()
Additional contact information
Rabha W. Ibrahim: University of Malaya
A chapter in Differential and Integral Inequalities, 2019, pp 423-433 from Springer
Abstract:
Abstract In this effort, we employ some of the linear differential inequalities to achieve integral inequalities of the type Wiener–Hopf problems (WHP). We utilize the concept of subordination and its applications to gain linear integral operators in the open unit disk that preserve two classes of analytic functions with a positive real part. Linear second-order differential inequalities play a significant role in the field of complex differential equations. Our study is based on a neighborhood containing the origin. Therefore, the Wiener–Hopf problem is decomposed around the origin in the open unit disk using two different classes of analytic functions. Moreover, we suggest a generalization for WHP by utilizing some classes of entire functions. Special cases are given in the sequel as well. A necessary and sufficient condition for WHP to be averaging operator on a convex domain (in the open unit disk) is given by employing the subordination relation (inequality).
Date: 2019
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-030-27407-8_13
Ordering information: This item can be ordered from
http://www.springer.com/9783030274078
DOI: 10.1007/978-3-030-27407-8_13
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().