Additive ρ-Functional Inequalities and Their Applications
Jung Rye Lee (),
Choonkil Park (),
Themistocles M. Rassias () and
Xiaohong Zhang ()
Additional contact information
Jung Rye Lee: Daejin University
Choonkil Park: Hanyang University
Themistocles M. Rassias: National Technical University of Athens
Xiaohong Zhang: Shanghai Maritime University
A chapter in Mathematical Analysis and Applications, 2019, pp 391-410 from Springer
Abstract:
Abstract In this paper, we solve the additive ρ-functional inequalities 1 ∥ f ( x + y + z ) − f ( x ) − f ( y ) − f ( z ) ∥ ≤ ρ 2 f x + y 2 + z − f ( x ) − f ( y ) − 2 f ( z ) , $$\displaystyle \begin{aligned} \begin{array}{rcl}{} &\displaystyle &\displaystyle \|f(x+y+z)- f(x)-f(y)- f(z)\| \\ &\displaystyle &\displaystyle \qquad \qquad \le \left\|\rho\left(2 f\left(\frac{x+y}{2}+z \right)-f(x) - f(y)- 2f(z) \right)\right\|, \end{array} \end{aligned} $$ where ρ is a fixed complex number with |ρ|
Date: 2019
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-030-31339-5_14
Ordering information: This item can be ordered from
http://www.springer.com/9783030313395
DOI: 10.1007/978-3-030-31339-5_14
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().