The Mirror Descent Algorithm
Alexander Zaslavski
Additional contact information 
Alexander Zaslavski: Israel Institute of Technology
Chapter Chapter 3 in Convex Optimization with Computational Errors, 2020, pp 83-125 from  Springer
Abstract:
Abstract In this chapter we analyze the mirror descent algorithm for minimization of convex and nonsmooth functions and for computing the saddle points of convex–concave functions, under the presence of computational errors. The problem is described by an objective function and a set of feasible points.
Date: 2020
References: Add references at CitEc 
Citations: 
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX 
RIS (EndNote, ProCite, RefMan) 
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-030-37822-6_3
Ordering information: This item can be ordered from
http://www.springer.com/9783030378226
DOI: 10.1007/978-3-030-37822-6_3
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications  from  Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().