EconPapers    
Economics at your fingertips  
 

A Zero-Sum Game with Two Players

Alexander Zaslavski
Additional contact information
Alexander Zaslavski: Israel Institute of Technology

Chapter Chapter 8 in Convex Optimization with Computational Errors, 2020, pp 259-275 from Springer

Abstract: Abstract In this chapter we study an algorithm for finding a saddle point of a zero-sum game with two players. For this algorithm each iteration consists of two steps. The first step is a calculation of a subgradient while the second one is a proximal gradient step. In each of these two steps there is a computational error. In general, these two computational errors are different. We show that our algorithm generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.

Date: 2020
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-030-37822-6_8

Ordering information: This item can be ordered from
http://www.springer.com/9783030378226

DOI: 10.1007/978-3-030-37822-6_8

Access Statistics for this chapter

More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:spochp:978-3-030-37822-6_8