EconPapers    
Economics at your fingertips  
 

Generalized Disjunctive Programming

Michael L. Bynum, Gabriel A. Hackebeil, William E. Hart, Carl D. Laird, Bethany L. Nicholson, John D. Siirola, Jean-Paul Watson and David L. Woodruff
Additional contact information
Michael L. Bynum: Sandia National Laboratories
Gabriel A. Hackebeil: Deepfield Nokia
William E. Hart: Sandia National Laboratories
Carl D. Laird: Sandia National Laboratories
Bethany L. Nicholson: Sandia National Laboratories
John D. Siirola: Sandia National Laboratories
Jean-Paul Watson: Lawrence Livermore National Laboratory
David L. Woodruff: University of California

Chapter Chapter 11 in Pyomo — Optimization Modeling in Python, 2021, pp 171-180 from Springer

Abstract: Abstract This chapter documents how to express and solve Generalized Disjunctive Programs (GDPs). GDP models provide a structured approach for describing logical relationships in optimization models.We show how Pyomo blocks provide a natural base for representing disjuncts and forming disjunctions, and we how to solve GDP models through the use of automated problem transformations.

Date: 2021
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-030-68928-5_11

Ordering information: This item can be ordered from
http://www.springer.com/9783030689285

DOI: 10.1007/978-3-030-68928-5_11

Access Statistics for this chapter

More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:spochp:978-3-030-68928-5_11