Hyers–Ulam Stability of Symmetric Biderivations on Banach Algebras
Jung Rye Lee (),
Choonkil Park () and
Themistocles M. Rassias ()
Additional contact information
Jung Rye Lee: Daejin University
Choonkil Park: Hanyang University
Themistocles M. Rassias: National Technical University of Athens
A chapter in Mathematical Analysis in Interdisciplinary Research, 2021, pp 555-572 from Springer
Abstract:
Abstract In C. Park (Indian J Pure Appl Math 50:413–426, 2019), Park introduced the following bi-additive s-functional inequality: 1 ∥ f ( x + y , z − w ) + f ( x − y , z + w ) − 2 f ( x , z ) + 2 f ( y , w ) ∥ ≤ s 2 f x + y 2 , z − w + 2 f x − y 2 , z + w − 2 f ( x , z ) + 2 f ( y , w ) , $$\displaystyle \begin{aligned} \begin {aligned}{} & \| f(x+y, z-w) + f(x-y, z+w) -2f(x, z)+2 f(y, w)\| \\ & \quad \le \left \|s \left (2f\left (\frac {x+y}{2}, z-w\right ) + 2f\left (\frac {x-y}{2}, z+w\right ) - 2f(x, z )+ 2 f(y, w)\right )\right \|, \end {aligned} {} \end{aligned} $$ where s is a fixed nonzero complex number with |s|
Date: 2021
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-030-84721-0_24
Ordering information: This item can be ordered from
http://www.springer.com/9783030847210
DOI: 10.1007/978-3-030-84721-0_24
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().