Symmetric Optimization Problems
Alexander Zaslavski ()
Additional contact information
Alexander Zaslavski: Technion-Israel Institute of Technol
Chapter Chapter 2 in Turnpike Phenomenon and Symmetric Optimization Problems, 2022, pp 25-89 from Springer
Abstract:
Abstract In this chapter we study several classes of symmetric optimization problems which are identified with the corresponding spaces of objective functions, equipped with appropriate complete metrics. Using the Baire category approach, for any of these classes, we show the existence of subset of the space of functions, which is a countable intersection of open and everywhere dense sets, such that for every objective function from this intersection the corresponding symmetric optimization problem possesses a solution. These results are obtained as realizations of a general variational principle which is established in this chapter. We extend these results for certain classes of symmetric optimization problems using a porosity notion. We identify a class of symmetric minimization problems with a certain complete metric space of functions, study the set of all functions for which the corresponding minimization problem has a solution, and show that the complement of this set is not only of the first category but also a σ-porous set.
Date: 2022
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-030-96973-8_2
Ordering information: This item can be ordered from
http://www.springer.com/9783030969738
DOI: 10.1007/978-3-030-96973-8_2
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().