EconPapers    
Economics at your fingertips  
 

Hypersonic Point-to-Point Travel for the Common Man

Carlos Bislip and Erwin Mooij ()
Additional contact information
Carlos Bislip: Delft University of Technology
Erwin Mooij: Delft University of Technology

A chapter in Modeling and Optimization in Space Engineering, 2023, pp 61-93 from Springer

Abstract: Abstract Objects travelling at hypersonic speeds typically experience significant mechanical loads, particularly during acceleration/deceleration. Excluding both technical and economic limitations, sub-orbital point-to-point travel is inevitably restricted to a group of individuals that are trained and whose health is certified prior to travel. This work seeks to explore the possibility of identifying, for a chosen route and reference vehicle, a set of parameters such that an individual could participate in hypersonic travel without health screenings or prior training. An open-loop guidance system is used with idealised navigation and control systems. The guidance method is based on node control with the assumption of instant implementation of commanded states. After an initial design space exploration is performed with various evolutionary algorithms, the Multi-objective Evolutionary Algorithm based on Decomposition with differential evolution (MOEA/D) (DE) is selected for further use, along with a preferred set of objective functions and a decision vector length. The subsequent optimisation strategy is separated into a coupled and decoupled phase approach, where the coupled approach combines the vehicle’s ascent and descent optimisations, while the decoupled approach performs a descent phase optimisation and attempts to link an ascent phase to the optimised descent phase. Decoupling, as performed, did not allow for the identification of a linkable trajectory. An optimal trajectory was identified with the coupled approach that required a significant amount of additional propellant and dry mass, yet maximum g0-loads approached the constraint of an increase of 1 g0. Recommendations are given to further the study.

Keywords: Point-to-point travel; Space-plane trajectories; Optimisation (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-031-24812-2_3

Ordering information: This item can be ordered from
http://www.springer.com/9783031248122

DOI: 10.1007/978-3-031-24812-2_3

Access Statistics for this chapter

More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:spochp:978-3-031-24812-2_3