EconPapers    
Economics at your fingertips  
 

Matrix Factorization Ranks Via Polynomial Optimization

Andries Steenkamp ()
Additional contact information
Andries Steenkamp: Centrum Wiskunde & Informatica (CWI)

A chapter in Polynomial Optimization, Moments, and Applications, 2023, pp 153-180 from Springer

Abstract: Abstract In light of recent data science trends, new interest has fallen in alternative matrix factorizations. By this, we mean various ways of factorizing particular data matrices so that the factors have special properties and reveal insights into the original data. We are interested in the specialized ranks associated with these factorizations, but they are usually difficult to compute. In particular, we consider the nonnegative-, completely positive-, and separable ranks. We focus on a general tool for approximating factorization ranks, the moment hierarchy, a classical technique from polynomial optimization, further augmented by exploiting ideal-sparsity. Contrary to other examples of sparsity, the resulting sparse hierarchy yields equally strong, if not superior, bounds while potentially delivering a speed-up in computation.

Date: 2023
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-031-38659-6_5

Ordering information: This item can be ordered from
http://www.springer.com/9783031386596

DOI: 10.1007/978-3-031-38659-6_5

Access Statistics for this chapter

More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:spochp:978-3-031-38659-6_5