Heuristic Kalman Algorithm
Rosario Toscano
Additional contact information
Rosario Toscano: École Nationale d’Ingénieurs de Saint-Etienne
Chapter Chapter 3 in Solving Optimization Problems with the Heuristic Kalman Algorithm, 2024, pp 47-69 from Springer
Abstract:
Abstract In this chapter a new optimization method is presented, called the Heuristic Kalman Algorithm (HKA). This new algorithm is proposed as an alternative approach for solving continuous non-convex optimization problems. The principle of HKA is to consider explicitly the optimization problem as a measurement process intended to give an estimate of the optimum. A specific procedure, based on the Kalman estimator, was developed to improve the quality of the estimate obtained through the measurement process. A significant advantage of HKA against other metaheuristics lies mainly in the small number of parameters which have to be set by the user. In addition, it is shown that HKA converges almost surely to a near-optimal solution. The efficiency of HKA is evaluated in detail through several non-convex test problems, both in the unconstrained and constrained cases. The results are then compared to those obtained via other metaheuristics. These various numerical experiments show that the HKA has very interesting potentialities for solving non-convex optimization problems, especially with regard to the computation time and the success ratio.
Date: 2024
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-031-52459-2_3
Ordering information: This item can be ordered from
http://www.springer.com/9783031524592
DOI: 10.1007/978-3-031-52459-2_3
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().