ZoneFL: Zone-Based Federated Learning at the Edge
Xiaopeng Jiang (),
Hessamaldin Mohammadi (),
Cristian Borcea () and
NhatHai Phan ()
Additional contact information
Xiaopeng Jiang: New Jersey Institute of Technology
Hessamaldin Mohammadi: New Jersey Institute of Technology
Cristian Borcea: New Jersey Institute of Technology
NhatHai Phan: New Jersey Institute of Technology
A chapter in Handbook of Trustworthy Federated Learning, 2025, pp 367-391 from Springer
Abstract:
Abstract Mobile apps, such as mHealth and wellness applications, can benefit from deep learning (DL) models trained with mobile sensing data collected by smart phones or wearable devices. However, currently there is no mobile sensing DL system that simultaneously achieves good model accuracy while adapting to user mobility behavior, scales well as the number of users increases, and protects user data privacy. We propose Zone-based Federated Learning (ZoneFL) to address these requirements. ZoneFL divides the physical space into geographical zones mapped to a mobile-edge-cloud system architecture for good model accuracy and scalability. Each zone has a federated training model, called a zone model, which adapts well to data and behaviors of users in that zone. Benefiting from the FL design, the user data privacy is protected during the ZoneFL training. We propose two novel zone-based federated training algorithms to optimize zone models to user mobility behavior: Zone Merge and Split (ZMS) and Zone Gradient Diffusion (ZGD). ZMS optimizes zone models by adapting the zone geographical partitions through merging of neighboring zones or splitting of large zones into smaller ones. Different from ZMS, ZGD maintains fixed zones and optimizes a zone model by incorporating the gradients derived from neighboring zones’ data. ZGD uses a self-attention mechanism to dynamically control the impact of one zone on its neighbors. Extensive analysis and experimental results demonstrate that ZoneFL significantly outperforms traditional FL in two models for heart rate prediction and human activity recognition. In addition, we developed a ZoneFL system using Android phones and AWS cloud. The system was used in a heart rate prediction field study with 63 users for 4 months, and we demonstrated the feasibility of ZoneFL in real-life.
Date: 2025
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-031-58923-2_12
Ordering information: This item can be ordered from
http://www.springer.com/9783031589232
DOI: 10.1007/978-3-031-58923-2_12
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().