C ∗ $$C^{\ast }$$ -Ternary Biderivations and C ∗ $$C^{\ast }$$ -Ternary Bihomomorphisms
Jung Rye Lee (),
Choonkil Park () and
Michael Th. Rassias
Additional contact information
Jung Rye Lee: Daejin University
Choonkil Park: Hanyang University
Michael Th. Rassias: Hellenic Military Academy
A chapter in Geometry and Non-Convex Optimization, 2025, pp 279-292 from Springer
Abstract:
Abstract Using the direct method, we prove the Hyers-Ulam stability of C ∗ $$C^*$$ -ternary biderivations and C ∗ $$C^*$$ -ternary bihomomorphism in C ∗ $$C^*$$ -ternary algebras, associated with the following bi-additive s-functional inequality: ∥ f ( x + y , z − w ) + f ( x − y , z + w ) −2 f ( x , z ) + 2 f ( y , w ) ∥ ≤ s 2 f x + y 2 , z − w + 2 f x − y 2 , z + w −2 f ( x , z ) + 2 f ( y , w ) , $$\displaystyle \begin {aligned}{} && \| f(x+y, z-w) + f(x-y, z+w) -2f(x,z)+2 f(y, w)\| \\ && \le \left \| s \left (2f\left (\frac {x+y}{2}, z-w\right ) + 2f\left (\frac {x-y}{2}, z+w\right ) - 2f(x,z )+ 2 f(y, w)\right )\right \|, \end {aligned} $$ where s is a fixed nonzero complex number with | s |
Date: 2025
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-031-87057-6_11
Ordering information: This item can be ordered from
http://www.springer.com/9783031870576
DOI: 10.1007/978-3-031-87057-6_11
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().