EconPapers    
Economics at your fingertips  
 

C ∗ $$C^{\ast }$$ -Ternary Biderivations and C ∗ $$C^{\ast }$$ -Ternary Bihomomorphisms

Jung Rye Lee (), Choonkil Park () and Michael Th. Rassias
Additional contact information
Jung Rye Lee: Daejin University
Choonkil Park: Hanyang University
Michael Th. Rassias: Hellenic Military Academy

A chapter in Geometry and Non-Convex Optimization, 2025, pp 279-292 from Springer

Abstract: Abstract Using the direct method, we prove the Hyers-Ulam stability of C ∗ $$C^*$$ -ternary biderivations and C ∗ $$C^*$$ -ternary bihomomorphism in C ∗ $$C^*$$ -ternary algebras, associated with the following bi-additive s-functional inequality: ∥ f ( x + y , z − w ) + f ( x − y , z + w ) −2 f ( x , z ) + 2 f ( y , w ) ∥ ≤ s 2 f x + y 2 , z − w + 2 f x − y 2 , z + w −2 f ( x , z ) + 2 f ( y , w ) , $$\displaystyle \begin {aligned}{} && \| f(x+y, z-w) + f(x-y, z+w) -2f(x,z)+2 f(y, w)\| \\ && \le \left \| s \left (2f\left (\frac {x+y}{2}, z-w\right ) + 2f\left (\frac {x-y}{2}, z+w\right ) - 2f(x,z )+ 2 f(y, w)\right )\right \|, \end {aligned} $$ where s is a fixed nonzero complex number with | s |

Date: 2025
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-031-87057-6_11

Ordering information: This item can be ordered from
http://www.springer.com/9783031870576

DOI: 10.1007/978-3-031-87057-6_11

Access Statistics for this chapter

More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-07-28
Handle: RePEc:spr:spochp:978-3-031-87057-6_11