Characterizations and Set Theoretic Properties of Some Generalized Open and Fat Sets in Relator Spaces
Themistocles M. Rassias (),
Muwafaq M. Salih () and
Árpád Száz ()
Additional contact information
Themistocles M. Rassias: National Technical University of Athens
Muwafaq M. Salih: College of Basic Education, University of Duhok
Árpád Száz: University of Debrecen
A chapter in Geometry and Non-Convex Optimization, 2025, pp 613-709 from Springer
Abstract:
Abstract A family R $$\mathcal {R}$$ of binary relations on a set X is called a relator on X, and the ordered pair X ( R ) = ( X , R ) $$ X(\mathcal {R})=(X, \mathcal {R})$$ is called a relator space. Sometimes, more generally, relators on X to Y may also be naturally considered. By using the following definitions, each minimal structure, generalized topology, or proper stack A $$\mathcal {A}$$ on X can be easily derived from the relator R A $$\mathcal {R}_{\mathcal {A}}$$ consisting of all Pervin’s preorders R A = A 2 ∪ ( A c × X ) $$R_{ A}= A^{2}\cup ( A^{c} \times X)$$ with A ∈ A $$A\in \mathcal {A}$$ . For any x ∈ X $$x\in X$$ and A , B ⊆ X $$A, B\subseteq X$$ , we write (1) A ∈ Int R ( B ) $$A\in \operatorname {\mathrm {Int}}_{\mathcal {R}}(B)$$ if R [ A ] ⊆ B $$R [ A ] \subseteq B$$ for some R ∈ R $$R\in \mathcal {R}$$ ; (2) A ∈ Cl R ( B ) $$A\in \operatorname {\mathrm {Cl}}_{\mathcal {R}}(B)$$ if R [ A ] ∩ B ≠ ∅ $$R [ A ] \cap B\ne \emptyset $$ for all R ∈ R $$R\in \mathcal {R}$$ ; (3) x ∈ int R ( B ) $$x\in \operatorname {\mathrm {int}}_{\mathcal {R}}(B)$$ if { x } ∈ Int R ( B ) $$\{x\}\in \operatorname {\mathrm {Int}}_{\mathcal {R}}(B)$$ ; (4) x ∈ cl R ( B ) $$x\in \operatorname {\mathrm {cl}}_{\mathcal {R}}(B)$$ if { x } ∈ Cl R ( B ) $$\{x\}\in \operatorname {\mathrm {Cl}}_{\mathcal {R}}(B)$$ ; (5) A ∈ τ R $$A\in \tau _{\scriptscriptstyle \mathcal {R}}$$ if A ∈ Int R ( A ) $$A\in \operatorname {\mathrm {Int}}_{\mathcal {R}}(A)$$ ; (6) A ∈ T R $$A\in \mathcal {T}_{\mathcal {R}}$$ if A ⊆ int R ( A ) $$A \subseteq \operatorname {\mathrm {int}}_{\mathcal {R}}(A)$$ ; (7) A ∈ E R $$A\in \mathcal {E}_{\mathcal {R}}$$ if int R ( A ) ≠ ∅ $$ \operatorname {\mathrm {int}}_{\mathcal {R}}(A)\ne \emptyset $$ ; (8) A ∈ N R $$A\in \mathcal {N}_{\mathcal {R}}$$ if cl R ( A ) ∉ E R $$ \operatorname {\mathrm {cl}}_{\mathcal {R}}(A)\notin \mathcal {E}_{\mathcal {R}}$$ . In our former papers, motivated by some standard definitions in topological spaces, for a subset A of the relator space X ( R ) $$X(\mathcal {R})$$ we, for instance, defined (a) A ∈ T R s $$A\in \mathcal {T}_{\mathcal {R}}^{s}$$ if A ⊆ cl R int R ( A ) $$A\subseteq \operatorname {\mathrm {cl}}_{\mathcal {R}}\left ( \operatorname {\mathrm {int}}_{\mathcal {R}}(A)\right )$$ ; (b) A ∈ T R p $$A\in \mathcal {T}_{\mathcal {R}}^{p}$$ if A ⊆ int R cl R ( A ) $$A\subseteq \operatorname {\mathrm {int}}_{\mathcal {R}}\left ( \operatorname {\mathrm {cl}}_{\mathcal {R}}(A)\right )$$ ; (c) A ∈ T R q $$A\in \mathcal {T}_{\mathcal {R}}^{q}$$ if V ⊆ A ⊆ cl R ( V ) $$V\subseteq A\subseteq \operatorname {\mathrm {cl}}_{\mathcal {R}}(V)$$ for some V ∈ T R $$V\in \mathcal {T}_{\mathcal {R}}$$ ; (d) A ∈ T R ps $$A\in \mathcal {T}_{\mathcal {R}}^{ps}$$ if A ⊆ V ⊆ cl R ( A ) $$A\subseteq V\subseteq \operatorname {\mathrm {cl}}_{\mathcal {R}}(A)$$ for some V ∈ T R $$V\in \mathcal {T}_{\mathcal {R}}$$ . Now, in addition to the above basic definitions, we shall also consider the following new definitions: (A) A ∈ τ R s $$A\in \tau _{\scriptscriptstyle \mathcal {R}}^{s}$$ if A ∈ Cl R Int R ( A ) $$A\in \operatorname {\mathrm {Cl}}_{\mathcal {R}} \left [ \operatorname {\mathrm {Int}}_{\mathcal {R}}(A) \right ]$$ ; (B) A ∈ τ R p $$A\in \tau _{\scriptscriptstyle \mathcal {R}}^{p}$$ if A ∈ Int R Cl R ( A ) $$A\in \operatorname {\mathrm {Int}}_{\mathcal {R}} \left [ \operatorname {\mathrm {Cl}}_{\mathcal {R}}(A) \right ]$$ ; (C) A ∈ τ R ms $$A\in \tau _{\scriptscriptstyle \mathcal {R}}^{ms}$$ if A ⊆ cl R Int R ( A ) $$A\subseteq \operatorname {\mathrm {cl}}_{\mathcal {R}} \left [ \operatorname {\mathrm {Int}}_{\mathcal {R}}(A) \right ]$$ ; (D) A ∈ τ R mp $$A\in \tau _{\scriptscriptstyle \mathcal {R}}^{mp}$$ if A ⊆ int R Cl R ( A ) $$A\subseteq \operatorname {\mathrm {int}}_{\mathcal {R}} \left [ \operatorname {\mathrm {Cl}}_{\mathcal {R}}(A) \right ]$$ ; (E) A ∈ T R ms $$A\in \mathcal {T}_{\mathcal {R}}^{ms}$$ if A ∈ Cl R int R ( A ) $$A\in \operatorname {\mathrm {Cl}}_{\mathcal {R}} \left ( \operatorname {\mathrm {int}}_{\mathcal {R}}(A) \right )$$ ; (F) A ∈ T R mp $$A\in \mathcal {T}_{\mathcal {R}}^{mp}$$ if A ∈ Int R cl R ( A ) $$A\in \operatorname {\mathrm {Int}}_{\mathcal {R}} \left ( \operatorname {\mathrm {cl}}_{\mathcal {R}}(A)\right )$$ ; (G) A ∈ τ R q $$A\in \tau _{\scriptscriptstyle \mathcal {R}}^{q}$$ if V ⊆ A ⊆ cl R ( V ) $$V\subseteq A\subseteq \operatorname {\mathrm {cl}}_{\mathcal {R}}(V)$$ for some V ∈ τ R $$V\in \tau _{\scriptscriptstyle \mathcal {R}}$$ ; (H) A ∈ τ R ps $$A\in \tau _{\scriptscriptstyle \mathcal {R}}^{ps}$$ if A ⊆ V ⊆ cl R ( A ) $$A\subseteq V\subseteq \operatorname {\mathrm {cl}}_{\mathcal {R}}(A)$$ for some V ∈ τ R $$V\in \tau _{\scriptscriptstyle \mathcal {R}}$$ ; ( I ) A ∈ E R q $$A\in \mathcal {E}_{\mathcal {R}}^{q}$$ if V ⊆ A ⊆ cl R ( V ) $$V\subseteq A\subseteq \operatorname {\mathrm {cl}}_{\mathcal {R}}(V)$$ for some V ∈ E R $$V\in \mathcal {E}_{\mathcal {R}}$$ ; (J ) A ∈ E R ps $$A\in \mathcal {E}_{\mathcal {R}}^{ps}$$ if A ⊆ V ⊆ cl R ( A ) $$A\subseteq V\subseteq \operatorname {\mathrm {cl}}_{\mathcal {R}}(A)$$ for some V ∈ E R $$V\in \mathcal {E}_{\mathcal {R}}$$ ; (K) A ∈ τ R wq $$A\in \tau _{\scriptscriptstyle \mathcal {R}}^{wq}$$ if V ⊆ A ∈ Cl R ( V ) $$V\subseteq A\in \operatorname {\mathrm {Cl}}_{\mathcal {R}}(V)$$ for some V ∈ τ R $$V\in \tau _{\scriptscriptstyle \mathcal {R}}$$ ; ( L) A ∈ τ R wps $$A\in \tau _{\scriptscriptstyle \mathcal {R}}^{wps}$$ if A ⊆ V ∈ Cl R ( A ) $$A\subseteq V\in \operatorname {\mathrm {Cl}}_{\mathcal {R}}(A)$$ for some V ∈ τ R $$V\in \tau _{\scriptscriptstyle \mathcal {R}}$$ ; (M) A ∈ T R wq $$A\in \mathcal {T}_{\mathcal {R}}^{wq}$$ if V ⊆ A ∈ Cl R ( V ) $$V\subseteq A\in \operatorname {\mathrm {Cl}}_{\mathcal {R}}(V)$$ for some V ∈ T R $$V\in \mathcal {T}_{\mathcal {R}}$$ ; (N) A ∈ T R wps $$A\in \mathcal {T}_{\mathcal {R}}^{wps}$$ if A ⊆ V ∈ Cl R ( A ) $$A\subseteq V\in \operatorname {\mathrm {Cl}}_{\mathcal {R}}(A)$$ for some V ∈ T R $$V\in \mathcal {T}_{\mathcal {R}}$$ ; (O) A ∈ E R wq $$A\in \mathcal {E}_{\mathcal {R}}^{wq}$$ if V ⊆ A ∈ Cl R ( V ) $$V\subseteq A\in \operatorname {\mathrm {Cl}}_{\mathcal {R}}(V)$$ for some V ∈ E R $$V\in \mathcal {E}_{\mathcal {R}}$$ ; (P) A ∈ E R wps $$A\in \mathcal {E}_{\mathcal {R}}^{wps}$$ if A ⊆ V ∈ Cl R ( A ) $$A\subseteq V\in \operatorname {\mathrm {Cl}}_{\mathcal {R}}(A)$$ for some V ∈ E R $$V\in \mathcal {E}_{\mathcal {R}}$$ . And, analogously to our former papers, we shall establish some characterizations and set theoretic properties of the families τ R κ $$\tau _{\scriptscriptstyle \mathcal {R}}^{\kappa }$$ , T R κ $$\mathcal {T}_{\mathcal {R}}^{\kappa }$$ and E R κ $$\mathcal {E}_{\mathcal {R}}^{\kappa }$$ with the operations κ $$\kappa $$ considered in definitions (A)–(P) .
Date: 2025
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-031-87057-6_15
Ordering information: This item can be ordered from
http://www.springer.com/9783031870576
DOI: 10.1007/978-3-031-87057-6_15
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().