Bounds for the Unweighted Jensen’s Gap of Absolutely Continuous Functions
Silvestru Sever Dragomir ()
Additional contact information
Silvestru Sever Dragomir: Victoria University
A chapter in Geometry and Non-Convex Optimization, 2025, pp 51-69 from Springer
Abstract:
Abstract Let Φ : I → ℂ $$\Phi :I\rightarrow \mathbb {C}$$ be an absolutely continuous function on m , M ⊂ I ̊ $$\left [ m,M\right ] \subset \mathring {I}$$ , the interior of I and h : a , b → m , M $$h:\left [ a,b\right ] \rightarrow \left [ m,M\right ] $$ absolutely continuous on a , b $$\left [ a,b\right ] $$ and such that The image displays a mathematical formula involving the essential supremum. The formula is: \\n\\n\[\\n\| h' \|_{[a,b], \infty} := \text{ess sup}_{t \in [a,b]} |h'(t)| γ $$\Gamma >\gamma $$ such that condition γ ≤ Φ ′ y ≤ Γ for a.e. y ∈ m , M $$\displaystyle \gamma \leq \Phi ^{\prime }\left ( y\right ) \leq \Gamma \text{ for a.e. }y\in \left [ m,M\right ] $$ holds, then 1 b − a ∫ a b Φ ∘ h t dt − Φ 1 b − a ∫ a b h t dt $$\displaystyle \left \vert \frac {1}{b-a}\int _{a}^{b}\left ( \Phi \circ h\right ) \left ( t\right ) dt-\Phi \left ( \frac {1}{b-a}\int _{a}^{b}h\left ( t\right ) dt\right ) \right \vert $$ ≤ 1 8 b − a Γ − γ h ′ a , b , ∞ . $$\displaystyle \leq \frac {1}{8}\left ( b-a\right ) \left ( \Gamma -\gamma \right ) \left \Vert h^{\prime }\right \Vert { }_{\left [ a,b\right ] ,\infty }. $$ Moreover, if Φ ′ $$\Phi ^{\prime }$$ is absolutely continuous on m , M $$\left [ m,M\right ] $$ with Φ ′′ m , M , ∞ : = esssup x ∈ a , b Φ ′′ x
Keywords: Jensen’s inequality; Measurable functions; Lebesgue integral; Discrete inequalities (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-031-87057-6_3
Ordering information: This item can be ordered from
http://www.springer.com/9783031870576
DOI: 10.1007/978-3-031-87057-6_3
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().