EconPapers    
Economics at your fingertips  
 

Two Walsh-Type Theorems for the Solutions of Multi-Affine Symmetric Polynomials

Blagovest Sendov () and Hristo Sendov ()
Additional contact information
Blagovest Sendov: Institute of Information and Communication Technologies
Hristo Sendov: Western University

A chapter in Progress in Approximation Theory and Applicable Complex Analysis, 2017, pp 145-162 from Springer

Abstract: Abstract The spirit of the classical Grace-Walsh-Szegő coincidence theorem states that if there is a solution of a multi-affine symmetric polynomial in a domain with certain properties, then in it there exists another solution with other properties. We present two results in the same spirit, which may be viewed as extensions of the Grace-Walsh-Szegő result.

Keywords: Grace-Walsh-Szegő coincidence theorem; Zeros and critical points of polynomials; Apolarity; Locus of a polynomial; Locus holder; Primary; 30C10 (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-319-49242-1_8

Ordering information: This item can be ordered from
http://www.springer.com/9783319492421

DOI: 10.1007/978-3-319-49242-1_8

Access Statistics for this chapter

More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:spochp:978-3-319-49242-1_8