EconPapers    
Economics at your fingertips  
 

Introduction

Neculai Andrei
Additional contact information
Neculai Andrei: Center for Advanced Modeling & Optimization

Chapter Chapter 1 in Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology, 2017, pp 1-17 from Springer

Abstract: Abstract This book is on nonlinear optimization in the GAMS technology. Continuous nonlinear optimization problems have a simple mathematical model and always refer to a system its running we want to optimize. Firstly, it contains an objective function which measures the performances or requirements of the system. Often, this function represents a profit, a time interval, a level, a sort of energy, or combination of different quantities which have a physical significance for the modeler. The objective function depends on some characteristics of the system, called variables or unknowns. The purpose of any optimization problem is to find the values of these variables that minimize (or maximize) the objective function, subject to some constraints the variables must satisfy. Constraints of an optimization problem may have different algebraic expressions. There are static and dynamic constraints called functional constraints. The difference between these types of constraints comes from the structure of their Jacobian. Another very important type of constraints is the simple bounds on variables. Both the objective function and the constraints may depend on some parameters with known values which represent the constructive characteristics of the system under optimization. The process of identifying the variables, parameters, the objective functions, and constraints is known as modeling, one of the finest intellectual activities. It is worth saying that in this book, we assume that the variables can take real values and the objective function and the constraints are smooth enough (at least twice differentiable) with known first-order derivatives. When the number of variables and the number of constraints are large, the optimization problem is quite challenging.

Date: 2017
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-319-58356-3_1

Ordering information: This item can be ordered from
http://www.springer.com/9783319583563

DOI: 10.1007/978-3-319-58356-3_1

Access Statistics for this chapter

More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:spochp:978-3-319-58356-3_1