Environmental Data Analysis
Carsten Dormann ()
Additional contact information
Carsten Dormann: University of Freiburg, Biometry and Environmental System Analysis
in Springer Books from Springer
Date: 2020
ISBN: 978-3-030-55020-2
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Chapters in this book:
- Ch Chapter 1 Samples, Random Variables—Histograms, Density Distribution
- Carsten Dormann
- Ch Chapter 10 Regression in R—Part II
- Carsten Dormann
- Ch Chapter 11 The Linear Model: t-test and ANOVA
- Carsten Dormann
- Ch Chapter 12 The Linear Model: t-test and ANOVA in R
- Carsten Dormann
- Ch Chapter 13 Hypotheses and Tests
- Carsten Dormann
- Ch Chapter 14 Experimental Design
- Carsten Dormann
- Ch Chapter 15 Multiple Regression: Regression with Multiple Predictors
- Carsten Dormann
- Ch Chapter 16 Multiple Regression in R
- Carsten Dormann
- Ch Chapter 17 Outlook
- Carsten Dormann
- Ch Chapter 2 Samples, Random Variables—Histograms and Density Distribution in R
- Carsten Dormann
- Ch Chapter 3 Distributions, Parameters and Estimators
- Carsten Dormann
- Ch Chapter 4 Distributions, Parameters and Estimators in R
- Carsten Dormann
- Ch Chapter 5 Correlation and Association
- Carsten Dormann
- Ch Chapter 6 Correlation and Association in R
- Carsten Dormann
- Ch Chapter 7 Regression—Part I
- Carsten Dormann
- Ch Chapter 8 Regression in R—Part I
- Carsten Dormann
- Ch Chapter 9 Regression—Part II
- Carsten Dormann
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprbok:978-3-030-55020-2
Ordering information: This item can be ordered from
http://www.springer.com/9783030550202
DOI: 10.1007/978-3-030-55020-2
Access Statistics for this book
More books in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().