Representation Learning
Nada Lavrač (),
Vid Podpečan () and
Marko Robnik-Šikonja ()
Additional contact information
Nada Lavrač: University of Nova Gorica, Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia; School of Engineering and Management
Vid Podpečan: Jožef Stefan Institute, Department of Knowledge Technologies
Marko Robnik-Šikonja: University of Ljubljana, Faculty of Computer and Information Science
in Springer Books from Springer
Date: 2021
ISBN: 978-3-030-68817-2
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Chapters in this book:
- Ch Chapter 1 Introduction to Representation Learning
- Nada Lavrač, Vid Podpečan and Marko Robnik-Šikonja
- Ch Chapter 2 Machine Learning Background
- Nada Lavrač, Vid Podpečan and Marko Robnik-Šikonja
- Ch Chapter 3 Text Embeddings
- Nada Lavrač, Vid Podpečan and Marko Robnik-Šikonja
- Ch Chapter 4 Propositionalization of Relational Data
- Nada Lavrač, Vid Podpečan and Marko Robnik-Šikonja
- Ch Chapter 5 Graph and Heterogeneous Network Transformations
- Nada Lavrač, Vid Podpečan and Marko Robnik-Šikonja
- Ch Chapter 6 Unified Representation Learning Approaches
- Nada Lavrač, Vid Podpečan and Marko Robnik-Šikonja
- Ch Chapter 7 Many Faces of Representation Learning
- Nada Lavrač, Vid Podpečan and Marko Robnik-Šikonja
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprbok:978-3-030-68817-2
Ordering information: This item can be ordered from
http://www.springer.com/9783030688172
DOI: 10.1007/978-3-030-68817-2
Access Statistics for this book
More books in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().