EconPapers    
Economics at your fingertips  
 

Product Integration Quadratures for the Radiative Transfer Problem with Hopf’s Kernel

Alain Largillier and Olivier Titaud

Chapter 22 in Integral Methods in Science and Engineering, 2002, pp 143-148 from Springer

Abstract: Abstract Either $$ X: = {C^0}\left( {\left[ {0,1} \right]} \right)orX: = {L^1}\left( {\left[ {0,1} \right]} \right) $$ can be used as theoretical framework for the integral operator $$ T:X \to X $$ defined by $$x \mapsto Tx:s \in [0,1] \mapsto (Tx)(s): = \frac{{{{\tau }_{0}}\varpi }}{2}\int_{0}^{1} {{{E}_{1}}({{\tau }_{0}}|s - t|)x(t)dt,}$$ where E1 denotes the first exponential-integral function, that is, the function E1 of the sequence $$ \left( {{E_v}} \right)_v^{\infty } = 1 $$ defined by $$\begin{array}{*{20}{c}} {{{E}_{\nu }}(\tau ): = \int_{1}^{\infty } {\frac{{\exp ( - \tau \mu )}}{{{{\mu }^{\nu }}}}d\mu ,} } & {\tau > 0,} & {\nu \in [\kern-0.15em[ 1,\infty [\kern-0.15em[ .} \\ \end{array}$$ and where $$ {\tau_0} > 0 $$ and $$ \varpi \in \left[ {0,1} \right]. $$

Date: 2002
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4612-0111-3_22

Ordering information: This item can be ordered from
http://www.springer.com/9781461201113

DOI: 10.1007/978-1-4612-0111-3_22

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:spr:sprchp:978-1-4612-0111-3_22