EconPapers    
Economics at your fingertips  
 

Algorithms for Optimal Smoothing Parameter

Anatoly Yu. Bezhaev and Vladimir A. Vasilenko
Additional contact information
Vladimir A. Vasilenko: Institute of Computational Mathematics and Mathematical Geophysics

Chapter Chapter 12 in Variational Theory of Splines, 2001, pp 243-262 from Springer

Abstract: Abstract As before, let the linear continuous operators A : X → Z, T : X → Y be defined in the Hilbert spaces, z be an element of the space Z. Present as in Chapter 1 the variational principle for the interpolating spline σ ∈ X in the following way (12.1) $$\sigma = \arg \mathop {\min }\limits_{u \in X,{A_u} = z} ||{T_u}||Y$$ and for the smoothing spline σα ∈ X with α > 0 (12.2) $${\sigma _\alpha } = \arg \mathop {\min \alpha }\limits_{u \in X} ||{T_u}||\mathop Y\limits^2 + ||{A_u} - z||\mathop Z\limits^2$$

Keywords: Taylor Series; Newton Method; Spectral Radius; Variational Theory; Smoothing Parameter (search for similar items in EconPapers)
Date: 2001
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4757-3428-7_12

Ordering information: This item can be ordered from
http://www.springer.com/9781475734287

DOI: 10.1007/978-1-4757-3428-7_12

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-1-4757-3428-7_12