EconPapers    
Economics at your fingertips  
 

Negative Definite Kernels on Trees

Alain Valette
Additional contact information
Alain Valette: Institut de Mathématiques

A chapter in Harmonic Analysis and Discrete Potential Theory, 1992, pp 99-105 from Springer

Abstract: Abstract Let S be a set; recall than a kernel ψ(.,.) on S is negative definite if there exists a Hilbert space H and a map β: S → H such that $$||\beta (x) - \beta (y)||^2 = \Psi (x,y)$$ for any x, y ∈ S.

Keywords: Bipartite Graph; Cayley Graph; Free Product; Homogeneous Tree; Positive Definite Kernel (search for similar items in EconPapers)
Date: 1992
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4899-2323-3_9

Ordering information: This item can be ordered from
http://www.springer.com/9781489923233

DOI: 10.1007/978-1-4899-2323-3_9

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:spr:sprchp:978-1-4899-2323-3_9