Poisson Boundaries of Random Walks on Discrete Solvable Groups
Vadim A. Kaimanovich
Additional contact information
Vadim A. Kaimanovich: Leningrad Shipbuilding Institute
A chapter in Probability Measures on Groups X, 1991, pp 205-238 from Springer
Abstract:
Abstract Let G be a topological group, and μ — a probability measure on G. A function f on G is called harmonic if it satisfies the mean value property % MathType!MTEF!2!1!+- % feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI % cacaWGNbGaaiykaiabg2da9maapeaabaGaamOzaiaacIcacaWGNbGa % amiEaiaacMcacaWGKbGaeqiVd0MaaiikaiaadIhacaGGPaaaleqabe % qdcqGHRiI8aaaa!4546! !!! $$ f(g) = \int {f(gx)d\mu (x)} $$ for all g ∈ G. It is well known that under natural assumptions on the measure μ there exists a measure G-space Γ with a quasi-invariant measure v such that the Poisson formula % MathType!MTEF!2!1!+- % feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI % cacaWGNbGaaiykaiabg2da9iabgYda8iqadAgagaqcaiaacYcacaWG % NbGaamODaiabg6da+aaa!3FC7! !!! $$ f(g) = $$ states an isometric isomorphism between the Banach space H ∞(G, μ) of bounded harmonic functions with sup-norm and the space X∞(Γ, μ). The space (Γ, v) is called the Poisson boundary of the pair (G, μ). Thus triviality of the Poisson boundary is equivalent to absence of non-constant bounded harmonic functions for the pair (G, μ) (the Liouville property).
Keywords: Random Walk; Semidirect Product; Extended Chain; Solvable Group; Wreath Product (search for similar items in EconPapers)
Date: 1991
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4899-2364-6_16
Ordering information: This item can be ordered from
http://www.springer.com/9781489923646
DOI: 10.1007/978-1-4899-2364-6_16
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().