EconPapers    
Economics at your fingertips  
 

Why Are Learning and Teaching Mathematics So Difficult?

Alan H. Schoenfeld ()
Additional contact information
Alan H. Schoenfeld: University of California, Graduate School of Education

Chapter 26 in Handbook of Cognitive Mathematics, 2022, pp 763-797 from Springer

Abstract: Abstract Decades ago Hans Freudenthal referred to the school mathematics experienced by most students as the “fossilized remains” of reasoning processes. Indeed, the facts and procedures of school mathematics may seem as frightening to some as the fossilized remains of a tyrannosaurus rex, although they are empty; like dinosaur skeletons, they bear only partial resemblance to the real thing. The challenge is to see the substance behind the structure and to understand how the mathematics fits together. That is a matter of mathematical thinking, reasoning, and problem-solving – the how and the why beneath the fossilized surface. Opportunities for such understandings are accessible through mathematical sense making, but they are rare in schools. This chapter indicates that there is more to learning and understanding mathematical content and practices than it would appear. Moreover, understanding mathematics is only one component of effective or “ambitious” teaching – better framed as the creation of mathematically rich and equitable learning environments. The challenge is to create robust learning environments that support every student in developing not only the knowledge and practices that underlie effective mathematical thinking, but that help them develop the sense of agency to engage in sense making. This implicates issues of race and equity, which are a challenge not only in classrooms but in society at large; structural and social inequities permeate the schools. Major obstacles to addressing the challenges of powerful mathematics within schools include a general absence of curricular support for rich and meaningful mathematics, instructional practices that do not invite students into mathematics, assessments that fail to focus on thinking, professional development that focuses on what the teacher does rather than the students’ learning opportunities and experiences, and a vastly inequitable cultural context both outside and inside schools. This chapter points to existence proofs that at least some these challenges can be addressed, while documenting the substantial challenges to making progress at scale.

Keywords: Ambitious instruction; Bias; Formative assessment; Problem-solving; Summative assessment; Teaching for robust understanding; Sense making; Systemic inequities; Thinking mathematically (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-031-03945-4_10

Ordering information: This item can be ordered from
http://www.springer.com/9783031039454

DOI: 10.1007/978-3-031-03945-4_10

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-3-031-03945-4_10