EconPapers    
Economics at your fingertips  
 

Tensor Calculus and Riemannian Geometry

Igor Kriz and Aleš Pultr
Additional contact information
Igor Kriz: University of Michigan, Department of Mathematics
Aleš Pultr: Charles University, Department of Applied Mathematics (KAM) Faculty of Mathematics and Physics

Chapter 15 in Introduction to Mathematical Analysis, 2013, pp 367-392 from Springer

Abstract: Abstract The attentive reader probably noticed that the concept of a Riemann metric on an open subset of ℝ n which we introduced in the last chapter, and the related material on geodesics, beg for a generalization to manifolds. Although this is not quite as straightforward as one might imagine, the work we have done in the last chapter gets us well underway. A serious problem we must address, of course, is how the concepts we introduced behave under change of coordinates. It turns out that what we have said on covariance and contravariance in manifolds is not quite enough: we need to discuss the notation of tensor calculus.

Keywords: Riemann Manifold; Riemann Surface; Open Neighborhood; Smooth Manifold; Riemannian Geometry (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-0636-7_15

Ordering information: This item can be ordered from
http://www.springer.com/9783034806367

DOI: 10.1007/978-3-0348-0636-7_15

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-3-0348-0636-7_15