EconPapers    
Economics at your fingertips  
 

Finite-Dimensional Indefinite Inner Product Spaces and Applications in Numerical Analysis

Christian Mehl ()
Additional contact information
Christian Mehl: Technische Universität Berlin, Institut für Mathematik

Chapter 18 in Operator Theory, 2015, pp 431-449 from Springer

Abstract: Abstract The aim of this chapter Finite dimensional indefinite inner product spaces is to give a few examples for the fruitful interaction of the theory of finite-dimensional indefinite inner product spaces as a special theme in Operator Theory on the one hand and Numerical Linear Algebra as a special theme in Numerical Analysis on the other hand. Two particular topics are studied in detail. First, the theory of polar decompositions in indefinite inner product spaces is reviewed, and the connection between polar decompositions and normal matrices is highlighted. It is further shown that the adaption of existing algorithms from Numerical Linear Algebra allows the numerical computation of these polar decompositions. Second, two particular applications are presented that lead to the Hamiltonian eigenvalue problem. The first example deals with Algebraic Riccati Equations that can be solved via the numerical computation of the Hamiltonian Schur form of a corresponding Hamiltonian matrix. It is shown that the question of the existence of the Hamiltonian Schur form can only be completely answered with the help of a particular invariant discussed in the theory of indefinite inner products: the sign characteristic. The topic of the second example is the stability of gyroscopic systems, and it is again the sign characteristic that allows the complete understanding of the different effects that occur if the system is subject to either general or structure-preserving perturbations.

Keywords: Invariant Subspace; Imaginary Axis; Polar Decomposition; Hamiltonian Matrix; Normal Matrice (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-0667-1_34

Ordering information: This item can be ordered from
http://www.springer.com/9783034806671

DOI: 10.1007/978-3-0348-0667-1_34

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-3-0348-0667-1_34