EconPapers    
Economics at your fingertips  
 

Problems of Number Theory

E. P. Ozhigova

Chapter Chapter Three in Mathematics of the 19th Century, 1992, pp 137-209 from Springer

Abstract: Abstract The preceding chapter contains an exposition of Gauss’ investigations pertaining to binary quadratic forms % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB % LrhDaibaieYlf9irVeeu0dXdh9vqqj-hEeeu0xXdbba9frFj0-OqFf % ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaq6Haamyyai % aadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOyaiaa % dIhacaWG5bGaey4kaSIaam4yaiaadMhadaahaaWcbeqaaiaaikdaaa % GccaGGSaaaaa!4276! $$a{x^2} + 2bxy + c{y^2},]$$ , a, b, c ∊ ℤ. Gauss began to study ternary forms % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB % LrhDaibaieYlf9irVeeu0dXdh9vqqj-hEeeu0xXdbba9frFj0-OqFf % ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaq6XaaabCae % aacaWGHbWaaSbaaSqaaiaadMgacaWGRbaabeaaaeaacaWGPbGaaiil % aiaadUgacqGH9aqpcaaIXaaabaGaaG4maaqdcqGHris5aOGaamiEam % aaBaaaleaacaWGPbaabeaakiaadIhadaWgaaWcbaGaam4AaiaacYca % aeqaaaaa!45DC! $$\sum\limits_{i,k = 1}^3 {{a_{ik}}} {x_i}{x_{k,}}]$$ a ik ≡ a ki , in Part V of his Disquisitiones entitled “Digression containing an investigation of ternary forms”. He introduced the notion of a discriminant (he called it a determinant) for such forms and showed that the number of classes of ternary forms with given discriminant is finite. Gauss sketched a program for the further development of a theory of ternary forms, considered their applications to the problem of representation of numbers by means of a sum of three squares, and to the proof of the theorem that every positive integer can be represented as a sum of three triangular numbers or four squares.

Keywords: Quadratic Form; Number Theory; Prime Number; Algebraic Number; Dirichlet Series (search for similar items in EconPapers)
Date: 1992
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-5112-1_3

Ordering information: This item can be ordered from
http://www.springer.com/9783034851121

DOI: 10.1007/978-3-0348-5112-1_3

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:spr:sprchp:978-3-0348-5112-1_3