Some principles of analysis
Jürgen Jost
Additional contact information
Jürgen Jost: Ruhr-Universität Bochum, Mathematisches Institut
Chapter 2 in Nonlinear Methods in Riemannian and Kählerian Geometry, 1991, pp 73-86 from Springer
Abstract:
Abstract Let L t : B 1 → B 2, B 1, B 2, Banachspaces be a family of (partial differential) operators, depending smoothly on a parameter t; typically t ∈ [0, 1] or t ∈ [0, ∞), and one knows a solution u 0 for t = 0, i.e. % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa % aaleaacaaIWaaabeaakiaadwhadaWgaaWcbaGaaGimaaqabaGccqGH % 9aqpcaaIWaGaaiilaaaa!3C0F! $${L_0}{u_0} = 0,$$ and one wants to find a solution u t % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa % aaleaacaWG0baabeaakiaadYeadaWgaaWcbaGaamiDaaqabaGccqGH % 9aqpcaaIWaaaaa!3BB4! $${L_t}{L_t} = 0$$ for all t, in particular either for t = 1 or for t → ∞, and in the latter case one would like to have convergence of u t as t → ∞. The proof usually consists of two steps; namely one shows that % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyeIuUaai % Ooaiabg2da9maacmaabaGaamiDaiaacQdacqGHdicjcaWG1bWaaSba % aSqaaiaadshaaeqaaOGaaGjcVlaabEhacaqGPbGaaeiDaiaabIgaca % aMi8UaamitamaaBaaaleaacaWG0baabeaakiaadwhadaWgaaWcbaGa % amiDaaqabaGccqGH9aqpcaaIWaaacaGL7bGaayzFaaaaaa!4D15! $$\sum : = \left\{ {t:\exists {u_t}{\kern 1pt} {\text{with}}{\kern 1pt} {L_t}{u_t} = 0} \right\}$$ is both open and closed (in [0, 1] or [0, ∞), resp.). Since by assumption 0 ∈ Σ, one concludes that a solution exists for every t.
Keywords: Riemannian Manifold; Parabolic Equation; Sectional Curvature; Implicit Function Theorem; Compact Riemannian Manifold (search for similar items in EconPapers)
Date: 1991
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-7706-0_2
Ordering information: This item can be ordered from
http://www.springer.com/9783034877060
DOI: 10.1007/978-3-0348-7706-0_2
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().