EconPapers    
Economics at your fingertips  
 

Some principles of analysis

Jürgen Jost
Additional contact information
Jürgen Jost: Ruhr-Universität Bochum, Mathematisches Institut

Chapter 2 in Nonlinear Methods in Riemannian and Kählerian Geometry, 1991, pp 73-86 from Springer

Abstract: Abstract Let L t : B 1 → B 2, B 1, B 2, Banachspaces be a family of (partial differential) operators, depending smoothly on a parameter t; typically t ∈ [0, 1] or t ∈ [0, ∞), and one knows a solution u 0 for t = 0, i.e. % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa % aaleaacaaIWaaabeaakiaadwhadaWgaaWcbaGaaGimaaqabaGccqGH % 9aqpcaaIWaGaaiilaaaa!3C0F! $${L_0}{u_0} = 0,$$ and one wants to find a solution u t % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa % aaleaacaWG0baabeaakiaadYeadaWgaaWcbaGaamiDaaqabaGccqGH % 9aqpcaaIWaaaaa!3BB4! $${L_t}{L_t} = 0$$ for all t, in particular either for t = 1 or for t → ∞, and in the latter case one would like to have convergence of u t as t → ∞. The proof usually consists of two steps; namely one shows that % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyeIuUaai % Ooaiabg2da9maacmaabaGaamiDaiaacQdacqGHdicjcaWG1bWaaSba % aSqaaiaadshaaeqaaOGaaGjcVlaabEhacaqGPbGaaeiDaiaabIgaca % aMi8UaamitamaaBaaaleaacaWG0baabeaakiaadwhadaWgaaWcbaGa % amiDaaqabaGccqGH9aqpcaaIWaaacaGL7bGaayzFaaaaaa!4D15! $$\sum : = \left\{ {t:\exists {u_t}{\kern 1pt} {\text{with}}{\kern 1pt} {L_t}{u_t} = 0} \right\}$$ is both open and closed (in [0, 1] or [0, ∞), resp.). Since by assumption 0 ∈ Σ, one concludes that a solution exists for every t.

Keywords: Riemannian Manifold; Parabolic Equation; Sectional Curvature; Implicit Function Theorem; Compact Riemannian Manifold (search for similar items in EconPapers)
Date: 1991
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-7706-0_2

Ordering information: This item can be ordered from
http://www.springer.com/9783034877060

DOI: 10.1007/978-3-0348-7706-0_2

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2026-02-09
Handle: RePEc:spr:sprchp:978-3-0348-7706-0_2