Pisot Numbers, Salem Numbers and Distribution Modulo 1
M. J. Bertin,
A. Decomps-Guilloux,
M. Grandet-Hugot,
M. Pathiaux-Delefosse and
J. P. Schreiber
Additional contact information
M. J. Bertin: Université Pierre et Marie Curie Mathématiques
A. Decomps-Guilloux: Université Pierre et Marie Curie Mathématiques
M. Grandet-Hugot: Université de Caen Mathématiques
M. Pathiaux-Delefosse: Université Pierre et Marie Curie Mathématiques
J. P. Schreiber: Université d’Orléans, Château de la Source
Chapter Chapter 5 in Pisot and Salem Numbers, 1992, pp 77-99 from Springer
Abstract:
Abstract This first chapter on Pisot and Salem numbers deals mainly with properties of distribution modulo 1 of certain sequences (λα n ). In particular we will show that Pisot and Salem numbers belong to the exceptional set of Koksma’s theorem. In order to display similarities and differences we will study the two sets together as often as posssible.
Keywords: Minimal Polynomial; Algebraic Integer; Integer Coefficient; Rational Integer; Pisot Number (search for similar items in EconPapers)
Date: 1992
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-8632-1_5
Ordering information: This item can be ordered from
http://www.springer.com/9783034886321
DOI: 10.1007/978-3-0348-8632-1_5
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().