EconPapers    
Economics at your fingertips  
 

A Monotone Approximation to the Wasserstein Diffusion

Karl-Theodor Sturm ()
Additional contact information
Karl-Theodor Sturm: Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Angewandte Mathematik

A chapter in Singular Phenomena and Scaling in Mathematical Models, 2014, pp 25-48 from Springer

Abstract: Abstract The Wasserstein space $$\mathcal{P}(M)$$ on an Euclidean or Riemannian space M – i.e. the space of probability measures on M equipped with the L 2-Wasserstein distance d W – offers a rich geometric structure. This allows to develop a far reaching first order calculus, with striking applications for instance to the reformulation of conservative PDEs on M as gradient flows of suitable functionals on $$\mathcal{P}(M)$$ , see e.g. [1, 7, 11].

Keywords: Conservative PDEs; Rich Geometric Structure; Striking Application; Wasserstein Space; Dirichlet Form (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-00786-1_2

Ordering information: This item can be ordered from
http://www.springer.com/9783319007861

DOI: 10.1007/978-3-319-00786-1_2

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-3-319-00786-1_2