EconPapers    
Economics at your fingertips  
 

Optimal Investment with Bounded VaR for Power Utility Functions

Bénamar Chouaf () and Serguei Pergamenchtchikov ()
Additional contact information
Bénamar Chouaf: Université de Sidi Bel Abbes, Laboratoire de Mathématiques Appliquées
Serguei Pergamenchtchikov: UMR 6085 CNRS-Université de Rouen, Laboratoire de Mathématiques Raphaël Salem

A chapter in Inspired by Finance, 2014, pp 103-116 from Springer

Abstract: Abstract We consider an optimal investment problem for Black–Scholes type financial market with bounded VaR measure on the whole investment interval [0,T]. The explicit form for the optimal strategies is found.

Keywords: Portfolio optimization; Stochastic optimal control; Risk constraints; Value-at-Risk; 91B28; 93E20 (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-02069-3_6

Ordering information: This item can be ordered from
http://www.springer.com/9783319020693

DOI: 10.1007/978-3-319-02069-3_6

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-3-319-02069-3_6