Optimal Investment with Bounded VaR for Power Utility Functions
Bénamar Chouaf () and
Serguei Pergamenchtchikov ()
Additional contact information
Bénamar Chouaf: Université de Sidi Bel Abbes, Laboratoire de Mathématiques Appliquées
Serguei Pergamenchtchikov: UMR 6085 CNRS-Université de Rouen, Laboratoire de Mathématiques Raphaël Salem
A chapter in Inspired by Finance, 2014, pp 103-116 from Springer
Abstract:
Abstract We consider an optimal investment problem for Black–Scholes type financial market with bounded VaR measure on the whole investment interval [0,T]. The explicit form for the optimal strategies is found.
Keywords: Portfolio optimization; Stochastic optimal control; Risk constraints; Value-at-Risk; 91B28; 93E20 (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-02069-3_6
Ordering information: This item can be ordered from
http://www.springer.com/9783319020693
DOI: 10.1007/978-3-319-02069-3_6
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().