Continuous and Completely Distributive Lattices
Klaus Keimel and
Jimmie Lawson
Additional contact information
Klaus Keimel: University of Manitoba, Department of Mathematics
Jimmie Lawson: University of Caen, Department of Mathematics
Chapter Chapter 1 in Lattice Theory: Special Topics and Applications, 2014, pp 5-53 from Springer
Abstract:
Abstract The study of continuous lattices was initiated by Dana Scott in the late 1960s in order to build mathematical models for certain constructs in theoretical computer science ([638] in LTF), and computational notions and motivations have continued to play a key role in the theory. Early successes included construction of a denotational semantics for certain programming languages where programs were semantically interpreted as functions between appropriate input and output domains (see, e.g., [271]) and construction of a specific domain of computation that provided a model for the untyped lambda calculus (see, [639] in LTF), no concrete model of the untyped lambda calculus having hitherto been given.
Keywords: Distributive Lattice; Complete Lattice; Continuous Lattice; Compact Element; Domain Equation (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-06413-0_1
Ordering information: This item can be ordered from
http://www.springer.com/9783319064130
DOI: 10.1007/978-3-319-06413-0_1
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().