Maximal Regularity and the Method of Fourier Multipliers
Ravi P. Agarwal,
Claudio Cuevas and
Carlos Lizama
Additional contact information
Ravi P. Agarwal: Texas A&M University, Department of Mathematics
Claudio Cuevas: Universidade Federal de Pernambuco, Departamento de Matemática
Carlos Lizama: Universidad de Santiago de Chile, Departamento de Matemática y Ciencia de la Computación
Chapter Chapter 2 in Regularity of Difference Equations on Banach Spaces, 2014, pp 19-45 from Springer
Abstract:
Abstract Difference equations in a Banach space X of the form 2.0.1 Δ u ( n ) = A u ( n ) + f ( n ) $$\displaystyle{ \Delta u(n) = Au(n) + f(n) }$$ arise in several branches of mathematical physics and engineering.
Keywords: Banach Space; Fourier Multiplier; Maximal Regularity; Multiplier Theorem; Differential Operator Equation (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-06447-5_2
Ordering information: This item can be ordered from
http://www.springer.com/9783319064475
DOI: 10.1007/978-3-319-06447-5_2
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().