Sums of the Digits in Bases 2 and 3
Jean-Marc Deshouillers (),
Laurent Habsieger (),
Shanta Laishram () and
Bernard Landreau ()
Additional contact information
Jean-Marc Deshouillers: Bordeaux INP, Université de Bordeaux, CNRS, Institut Mathématique de Bordeaux, UMR 5251
Laurent Habsieger: Université de Lyon, CNRS UMR 5208, Institut Camille Jordan
Shanta Laishram: Indian Statistical Institute
Bernard Landreau: Université d’Angers, CNRS, LAREMA Laboratoire Angevin de REcherche en MAthématiques, UMR 6093, FR 2962
A chapter in Number Theory – Diophantine Problems, Uniform Distribution and Applications, 2017, pp 211-217 from Springer
Abstract:
Abstract Let b ≥ 2 be an integer and let s b (n) denote the sum of the digits of the representation of an integer n in base b. For sufficiently large N, one has Card { n ≤ N : s 3 ( n ) − s 2 ( n ) ≤ 0 . 1457205 log n } > N 0 . 970359 . $$\displaystyle{\mathop{\mathrm{Card}}\nolimits \{n \leq N: \left \vert s_{3}(n) - s_{2}(n)\right \vert \leq 0.1457205\log n\}\,>\, N^{0.970359}.}$$ The proof only uses the separate (or marginal) distributions of the values of s 2(n) and s 3(n).
Keywords: 11K16 (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-55357-3_9
Ordering information: This item can be ordered from
http://www.springer.com/9783319553573
DOI: 10.1007/978-3-319-55357-3_9
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().