EconPapers    
Economics at your fingertips  
 

Parameter Estimation and Model Selection

Gennady Bocharov (), Vitaly Volpert, Burkhard Ludewig and Andreas Meyerhans
Additional contact information
Gennady Bocharov: Russian Academy of Sciences, Marchuk Institute of Numerical Mathematics
Vitaly Volpert: Centre National de la Recherche Scientifique (CNRS), Institut Camille Jordan, UMR 5208 CNRS
Burkhard Ludewig: Kantonsspital St. Gallen, Institute of Immunobiology
Andreas Meyerhans: ICREA and Universitat Pompeu Fabra, Parc de Recerca Biomedica Barcelona

Chapter Chapter 3 in Mathematical Immunology of Virus Infections, 2018, pp 35-95 from Springer

Abstract: Abstract In this chapter, we illustrate a data-driven methodology to formulation and calibration of mathematical models of immune responses. The maximum likelihood approach to parameter estimation, Tikhonov regularization method and information-theoretic criteria for model ranking and selection are presented for models formulated with ODEs, DDEs and PDEs. Experimental data on CFSE-based proliferation analysis of T cells and LCMV–CTL dynamics in a low dose experimental infection of mice are used.

Date: 2018
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-72317-4_3

Ordering information: This item can be ordered from
http://www.springer.com/9783319723174

DOI: 10.1007/978-3-319-72317-4_3

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-08
Handle: RePEc:spr:sprchp:978-3-319-72317-4_3