EconPapers    
Economics at your fingertips  
 

The Poincaré Polynomial of a Linear Code

Carlos Galindo (), Fernando Hernando (), Francisco Monserrat () and Ruud Pellikaan ()
Additional contact information
Carlos Galindo: Universitat Jaume I, Departamento de Matemáticas, Instituto Universitario de Matemáticas y Aplicaciones de Castellón
Fernando Hernando: Universitat Jaume I, Departamento de Matemáticas, Instituto Universitario de Matemáticas y Aplicaciones de Castellón
Francisco Monserrat: Universidad Politécnica de Valencia, Instituto Universitario de Matemática Pura y Aplicada (IUMPA)
Ruud Pellikaan: Technische Universiteit Eindhoven, Discrete Mathematics

A chapter in Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics, 2018, pp 525-535 from Springer

Abstract: Abstract We introduce the Poincaré polynomial of a linear q-ary code and its relation to the corresponding weight enumerator. The question of whether the Poincaré polynomial is a complete invariant is answered affirmatively for q = 2, 3 and negatively for q ≥ 4. Finally we determine this polynomial for MDS codes and, by means of a recursive formula, for binary Reed-Muller codes.

Date: 2018
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-96827-8_23

Ordering information: This item can be ordered from
http://www.springer.com/9783319968278

DOI: 10.1007/978-3-319-96827-8_23

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-3-319-96827-8_23