Estimation of Vector Autoregressive Processes
Helmut Lütkepohl
Chapter 3 in New Introduction to Multiple Time Series Analysis, 2005, pp 69-133 from Springer
Abstract:
Abstract In this chapter, it is assumed that a K-dimensional multiple time series % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa % aaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamyEamaaBaaa % leaacaWGubaabeaakiaaysW7caWG3bGaamyAaiaadshacaWGObGaaG % jbVlaadMhadaWgaaWcbaGaamiDaaqabaGccqGH9aqpdaqadaqaaiaa % dMhadaWgaaWcbaGaaGymaiaadshaaeqaaOGaaiilaiablAciljaacY % cacaWG5bWaaSbaaSqaaiaadUeacaWG0baabeaaaOGaayjkaiaawMca % amaaCaaaleqabaGccWaGGBOmGikaaaaa!5397! $$y_1 , \ldots ,y_T \;with\;y_t = \left( {y_{1t} , \ldots ,y_{Kt} } \right)^\prime $$ is available that is known to be generated by a stationary, stable VAR(p) process 3.1.1 % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa % aaleaacaWG0baabeaakiabg2da9iaadAhacqGHRaWkcaWGbbWaaSba % aSqaaiaaigdacaWG5bGaamiDaiabgkHiTiaaigdaaeqaaOGaey4kaS % IaeSOjGSKaey4kaSIaamyqamaaBaaaleaacaWGWbaabeaakiaadMha % daWgaaWcbaGaamiDaiabgkHiTiaadchaaeqaaOGaey4kaSIaamyDam % aaBaaaleaacaWG0baabeaakiaac6caaaa!4CF6! $$ y_t = v + A_{1yt - 1} + \ldots + A_p y_{t - p} + u_t . $$ All symbols have their usual meanings, that is, ν = (ν1,…, ν K )′ is a (K × 1) vector of intercept terms, the A i are (K × K) coefficient matrices and u t is white noise with nonsingular covariance matrix Σu. In contrast to the assumptions of the previous chapter, the coefficients ν, A 1,…, A p , and Σu are assumed to be unknown in the following. The time series data will be used to estimate the coefficients. Note that notationwise we do not distinguish between the stochastic process and a time series as a realization of a stochastic process. The particular meaning of a symbol should be obvious from the context.
Keywords: Mean Square Error; Impulse Response; Asymptotic Distribution; Little Square Estimator; Asymptotic Covariance Matrix (search for similar items in EconPapers)
Date: 2005
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-540-27752-1_3
Ordering information: This item can be ordered from
http://www.springer.com/9783540277521
DOI: 10.1007/978-3-540-27752-1_3
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().