Field Generators for the Quantum Plane
Jacques Alev and
François Dumas
A chapter in Algebra, Arithmetic and Geometry with Applications, 2004, pp 127-141 from Springer
Abstract:
Abstract Let k be a commutative field and q a (nonzero and not root of one) quantization parameter in k. Manin’s quantum plane P = k q[x,y] is the k-algebra of noncommutative polynomials in two variables with commutation law xy = qyx. The quantum torus R = k q[x ±1, y ±1 ] is the simple localization of P consisting of quantum Laurent polynomials. We denote by k q(x,y) = Frac R = Frac P the skew field of quantum rational functions over k. For any nonzero polynomials A,B ∈R such that AB = q BA, the (skew) subfield k q(A, B) of k q(x, y) generated by A and B is isomorphic to k q(x,y); the main question discussed in the paper is then: do we have k q(x,y) = k q(A,B)? We prove that this equality holds if at least one of the generators A or B is a monomial in R, or if the support of at least one of them is based on a line.
Date: 2004
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-642-18487-1_6
Ordering information: This item can be ordered from
http://www.springer.com/9783642184871
DOI: 10.1007/978-3-642-18487-1_6
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().