EconPapers    
Economics at your fingertips  
 

Moving to Higher Dimensions

Wolfgang Karl Härdle and Zdeněk Hlávka
Additional contact information
Wolfgang Karl Härdle: Humboldt-Universität zu Berlin, C.A.S.E. Centre f. Appl. Stat. & Econ. School of Business and Economics
Zdeněk Hlávka: Charles University in Prague, Faculty of Mathematics and Physics Department of Statistics

Chapter Chapter 3 in Multivariate Statistics, 2015, pp 27-42 from Springer

Abstract: Abstract The basic tool used for investigating dependencies between the ith and jth components of a random vector X is the covariance $$\displaystyle{ \sigma _{X_{i}X_{j}} =\mathop{ \mathrm{\mathsf{Cov}}}\nolimits (X_{i},X_{j}) =\mathop{ \mathrm{\mathsf{E}}}\nolimits (X_{i}X_{j}) - (\mathop{\mathrm{\mathsf{E}}}\nolimits X_{i})(\mathop{\mathrm{\mathsf{E}}}\nolimits X_{j}). }$$ From a data set, the covariance between the ith and jth columns can be estimated as $$\displaystyle{ s_{X_{i}X_{j}} = \frac{1} {n}\sum _{k=1}^{n}(x_{ ik} -\bar{ x}_{i})(x_{jk} -\bar{ x}_{j}). }$$

Keywords: Null Hypothesis; Regression Line; Marketing Strategy; Variance Matrix; Empirical Covariance (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-642-36005-3_3

Ordering information: This item can be ordered from
http://www.springer.com/9783642360053

DOI: 10.1007/978-3-642-36005-3_3

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-3-642-36005-3_3