Diophantine Inequalities for Forms
Wang Yuan
Additional contact information
Wang Yuan: Academia Sinica, Institute of Mathematics
Chapter Chapter 11 in Diophantine Equations and Inequalities in Algebraic Number Fields, 1991, pp 140-162 from Springer
Abstract:
Abstract A form F(λ) of degree k can be written as $$ F\left( \lambda \right) = \mathop{\sum }\limits_{{1 \leqslant {{i}_{1}}, \ldots ,{{i}_{k}} \leqslant s}} a\left( {{{i}_{1}}, \ldots ,{{i}_{k}}} \right){{\lambda }_{{{{i}_{l}}}}} \cdots {{\lambda }_{{{{i}_{k}}}}} $$ we associate the multilinear form $$ \hat F\left( \lambda \right) = \sum\limits_{1 \leqslant {i_1}, \ldots {i_k} \leqslant s} {a\left( {{i_{1, \ldots ,{i_k}}}} \right){\lambda _{{i_1}}} \ldots {\lambda _{{i_k}}}} $$
Date: 1991
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-642-58171-7_11
Ordering information: This item can be ordered from
http://www.springer.com/9783642581717
DOI: 10.1007/978-3-642-58171-7_11
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().