Uniform Distribution of Values of Multiplicative Functions
Wenbin Zhang
Additional contact information
Wenbin Zhang: South China University of Technology Guangzhou, Department of Mathematics
A chapter in International Symposium in Memory of Hua Loo Keng, 1991, pp 347-353 from Springer
Abstract:
Abstract Let n → ϕ(n) be a positive valued arithmetic function which tends to infinity as n → ∞. Following [5], we shall say that the values of ϕ are uniformly distributed in (0, ∞) (briefly, ϕ is u. d. in (0, ∞)) if there exists a positive constant c such that % MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaad6eadaqadaqaaiaa % dIhacaGG7aGaeqOXdOgacaGLOaGaayzkaaGaaiOoaiabg2da9iaaco % cadaGadaqaaiaad6gacqGHflY1cqaHgpGAdaqadaqaaiaad6gaaiaa % wIcacaGLPaaacqGHKjYOcaWG4baacaGL7bGaayzFaaGaeSipIOJaam % 4yaiaadIhaaaa!51FB! $$N\left( x \right) = N\left( {x;\varphi } \right): = \# \left\{ {n \cdot \varphi \left( n \right) \leqslant x} \right\} \sim cx$$ as x → ∞. The number c will be called the density of values of ϕ. Also, we shall say that the values of ϕ are distributed with zero (respectively infinite) density in (0, ∞) if N(x)/x tends to zero (respectively infinity) as x → ∞.
Keywords: Multiplicative Function; Arithmetic Function; Zero Density; Generalize Integer; Integral Version (search for similar items in EconPapers)
Date: 1991
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-662-07981-2_21
Ordering information: This item can be ordered from
http://www.springer.com/9783662079812
DOI: 10.1007/978-3-662-07981-2_21
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().