EconPapers    
Economics at your fingertips  
 

Macro-elements of arbitrary smoothness over the Alfeld split of a tetrahedron

Michael A. Matt

Chapter 7 in Trivariate Local Lagrange Interpolation and Macro Elements of Arbitrary Smoothness, 2012, pp 233-284 from Springer

Abstract: Abstract In this chapter the trivariate Cr macro-elements of Lai and Matt [54] based on the Alfeld split of a tetrahedron (see Definition 2.6) are considered. In section 7.1, we investigate the minimal conditions for the polynomial degree and the degree supersmoothness for splines based on the Alfeld split. In the next section, we consider minimal determining sets for Cr macro-elements over the Alfeld split. In the following section 7.3, in order to ease the understanding of the constructed minimal determining sets, we give some examples for these. In section 7.4, we illustrate nodal minimal determining sets for the macro-elements. Finally, in section 7.5, we construct a Hermite interpolant based on the Alfeld split, which yields optimal approximation order.

Date: 2012
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-8348-2384-7_7

Ordering information: This item can be ordered from
http://www.springer.com/9783834823847

DOI: 10.1007/978-3-8348-2384-7_7

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:spr:sprchp:978-3-8348-2384-7_7