EconPapers    
Economics at your fingertips  
 

Linear Algebra over Semirings

Kazimierz Głazek
Additional contact information
Kazimierz Głazek: University of Zielona Góra, Institute of Mathematics

Chapter 3 in A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences, 2002, pp 25-42 from Springer

Abstract: Abstract Many important constructions in pure and applied mathematics can be understood as semimodules over appropriate semirings. The theory of semimodules and (linear) semialgebras can be considered as a natural generalization of the theory of linear algebras and linear spaces over fields, and the theory of modules and algebras over rings. A (left) S-semimodule V over a semiring S is usually considered under assumptions that both operations of S are commutative, the addition has the (annihilating) zero 0 S , and often the multiplication has the unity element 1 S , V is a commutative additive monoid (or, more generally, only a semigroup), and, moreover, the usual conditions (see Section 3.1 below) are fulfilled. Every commutative monoid (with zero) is, of course, an ℕ-semimodule, i.e. a semimodule over the semiring ℕ of natural numbers. Any so-called in ℤ n is of necessity a left ℕ-semimodule. It is worth recalling that D. Hilbert [1890] showed that every polyhedral monoid has a finite basis (a constructive method of finding such a basis is due to A. Bachem [1978]). More general considerations concern so-called S-acts or polygons over a semiring S, in the terminology used by L.A. Skornyakov ([1973], [1978]) and investigated by him and his co-workers. See the book by M. Klip, U. Knauer & A.V. Mikhalev [2000]. The theory of matrices over semirings is intensively developed. There are also interesting investigations of the theories of semialgebras and topological semialgebras.

Keywords: Linear Algebra; Path Algebra; Discrete Event System; Commutative Monoid; Iteration Theory (search for similar items in EconPapers)
Date: 2002
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-94-015-9964-1_4

Ordering information: This item can be ordered from
http://www.springer.com/9789401599641

DOI: 10.1007/978-94-015-9964-1_4

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:spr:sprchp:978-94-015-9964-1_4