EconPapers    
Economics at your fingertips  
 

Put Option as Joint Distribution Function in Strike and Maturity

Christophe Profeta (), Bernard Roynette () and Marc Yor
Additional contact information
Christophe Profeta: Université Nancy I
Bernard Roynette: Université Nancy I
Marc Yor: Université Paris VI

Chapter Chapter 6 in Option Prices as Probabilities, 2010, pp 143-159 from Springer

Abstract: Abstract For a large class of ℝ+-valued, continuous local martingales (M t ,t≥0), with M 0=1 and M ∞=0, the put quantity: $\Pi_{M}(K,t)=\mathbb{E}\left[(K-M_{t})^{+}\right]$ turns out to be the distribution function in both variables K and t, for K≤1 and t≥0, of a probability γ M on [0,1]×[0,+∞[. We discuss in detail, in this Chapter, the case where $(M_{t}=\mathcal{E}_{t}:=\exp(B_{t}-\frac{t}{2}),t\geq0)$ , for $(B_{t},\;t\ge 0)$ a standard Brownian motion, and give an extension to the more general case of the semimartingale $\mathcal{E}^{\sigma,-\nu }_{t}:=\exp \big(\sigma B_{t}-\nu t\big)$ , (σ≠0,ν>0).

Date: 2010
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprfcp:978-3-642-10395-7_6

Ordering information: This item can be ordered from
http://www.springer.com/9783642103957

DOI: 10.1007/978-3-642-10395-7_6

Access Statistics for this chapter

More chapters in Springer Finance from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-10-02
Handle: RePEc:spr:sprfcp:978-3-642-10395-7_6