Put Option as Joint Distribution Function in Strike and Maturity
Christophe Profeta (),
Bernard Roynette () and
Marc Yor
Additional contact information
Christophe Profeta: Université Nancy I
Bernard Roynette: Université Nancy I
Marc Yor: Université Paris VI
Chapter Chapter 6 in Option Prices as Probabilities, 2010, pp 143-159 from Springer
Abstract:
Abstract For a large class of ℝ+-valued, continuous local martingales (M t ,t≥0), with M 0=1 and M ∞=0, the put quantity: $\Pi_{M}(K,t)=\mathbb{E}\left[(K-M_{t})^{+}\right]$ turns out to be the distribution function in both variables K and t, for K≤1 and t≥0, of a probability γ M on [0,1]×[0,+∞[. We discuss in detail, in this Chapter, the case where $(M_{t}=\mathcal{E}_{t}:=\exp(B_{t}-\frac{t}{2}),t\geq0)$ , for $(B_{t},\;t\ge 0)$ a standard Brownian motion, and give an extension to the more general case of the semimartingale $\mathcal{E}^{\sigma,-\nu }_{t}:=\exp \big(\sigma B_{t}-\nu t\big)$ , (σ≠0,ν>0).
Date: 2010
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprfcp:978-3-642-10395-7_6
Ordering information: This item can be ordered from
http://www.springer.com/9783642103957
DOI: 10.1007/978-3-642-10395-7_6
Access Statistics for this chapter
More chapters in Springer Finance from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().