A Comparison of Statistical Methods for Studying Interactions of Chemical Mixtures
Debamita Kundu (),
Sungduk Kim (),
Mary H. Ward and
Paul S. Albert ()
Additional contact information
Debamita Kundu: University of Virginia
Sungduk Kim: National Cancer Institute
Mary H. Ward: National Cancer Institute
Paul S. Albert: National Cancer Institute
Statistics in Biosciences, 2024, vol. 16, issue 2, No 10, 503-519
Abstract:
Abstract Properly assessing the effects of environmental chemical exposures on disease risk remains a challenging problem in environmental epidemiology. Various analytic approaches have been proposed, but there are few papers that have compared the performance of different statistical methods on a single dataset. In this paper, we compare different regression-based approaches for estimating interactions between chemical mixture components using data from a case–control study on non-Hodgkin’s lymphoma. An analytic challenge is the high percentage of exposures that are below the limit of detection (LOD). Using imputation for LOD, we compare different Bayesian shrinkage prior approaches including an approach that incorporates the hierarchical principle where interactions are only included when main effects exist. Further, we develop an approach where main and interactive effects are represented by a series of distinct latent functions. We also fit the Bayesian kernel machine regression to these data. All of these approaches show little evidence of an interaction among the chemical mixtures when measurements below the LOD were imputed. The imputation approach makes very strong assumptions about the relationship between exposure and disease risk for measurements below the LOD. As an alternative, we show the results of an analysis where we model the exposure relationship with two parameters per mixture component; one characterizing the effect of being below the LOD and the other being a linear effect above the LOD. In this later analysis, we identify numerous strong interactions that were not identified in the analyses with imputation. This case study demonstrated the importance of developing new approaches for mixtures when the proportions of exposure measurements below the LOD are high.
Keywords: Bayesian kernel machine regression; Chemical mixture; Interaction; Latent class model; Shrinkage prior (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12561-023-09415-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:16:y:2024:i:2:d:10.1007_s12561-023-09415-4
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561
DOI: 10.1007/s12561-023-09415-4
Access Statistics for this article
Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin
More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().