The Calibrated Bayesian Hypothesis Test for Directional Hypotheses of the Odds Ratio in $$2\times 2$$ 2 × 2 Contingency Tables
Riko Kelter ()
Additional contact information
Riko Kelter: University of Siegen
Statistics in Biosciences, 2025, vol. 17, issue 2, No 8, 410-441
Abstract:
Abstract The $$\chi ^{2}$$ χ 2 test is among the most widely used statistical hypothesis tests in medical research. Often, the statistical analysis deals with the test of row-column independence in a $$2\times 2$$ 2 × 2 contingency table, and the statistical parameter of interest is the odds ratio. A novel Bayesian analogue to the frequentist $$\chi ^{2}$$ χ 2 test is introduced. The test is based on a Dirichlet-multinomial model under a joint sampling scheme and works with balanced and unbalanced randomization. The test focusses on the quantity of interest in a variety of medical research, the odds ratio in a $$2\times 2$$ 2 × 2 contingency table. A computational implementation of the test is developed and R code is provided to apply the test. To meet the demands of regulatory agencies, a calibration of the Bayesian test is introduced which allows to calibrate the false-positive rate and power. The latter provides a Bayes-frequentist compromise which ensures control over the long-term error rates of the test. Illustrative examples using clinical trial data and simulations show how to use the test in practice. In contrast to existing Bayesian tests for $$2\times 2$$ 2 × 2 tables, calibration of the acceptance threshold for the hypothesis of interest allows to achieve a bound on the false-positive rate and minimum power for a prespecified odds ratio of interest. The novel Bayesian test provides an attractive choice for Bayesian biostatisticians who face the demands of regulatory agencies which usually require formal control over false-positive errors and power under the alternative. As such, it constitutes an easy-to-apply addition to the arsenal of already existing Bayesian tests.
Keywords: Chi-square test; Contingency table; $$2\times 2$$ 2 × 2 Table; Bayesian statistics (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12561-024-09425-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:17:y:2025:i:2:d:10.1007_s12561-024-09425-w
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561
DOI: 10.1007/s12561-024-09425-w
Access Statistics for this article
Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin
More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().