More Powerful Control of the False Discovery Rate Under Dependence
Alessio Farcomeni
Statistical Methods & Applications, 2006, vol. 15, issue 1, No 5, 43-73
Abstract:
Abstract In a breakthrough paper, Benjamini and Hochberg (J Roy Stat Soc Ser B 57:289–300, 1995) proposed a new error measure for multiple testing, the FDR; and developed a distribution-free procedure to control it under independence among the test statistics. In this paper we argue by extensive simulation and theoretical considerations that the assumption of independence is not needed. Along the lines of (Ann Stat 32:1035–1061, 2004b), we moreover provide a more powerful method, that exploits an estimator of the number of false nulls among the tests. We propose a whole family of iterative estimators that prove robust under dependence and independence between the test statistics. These estimators can be used to improve also classical multiple testing procedures, and in general to estimate the weight of a known component in a mixture distribution. Innovations are illustrated by simulations.
Keywords: Dependence; False discovery rate; Multiple testing (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10260-006-0002-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:15:y:2006:i:1:d:10.1007_s10260-006-0002-z
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-006-0002-z
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().